
97 

 

 

 

 

 

 

 

 

Application of Topic Modelling for the Construction of Semantic Frames for 

Named Rivers 

 

Construcción de marcos semánticos para ríos con nombre propio mediante 

Topic Modelling 
 

 

JUAN ROJAS-GARCIA
1 

UNIVERSITY OF GRANADA 

 
EcoLexicon is a terminological knowledge base on environmental science whose design permits 

the geographic contextualization of data. For the geographic contextualization of concepts related 

to named landforms, this paper presents a semi-automatic method of extracting terms associated 

with named rivers (e.g., Salinas River). Terms were extracted from a specialized corpus on 

Coastal Engineering, where named rivers were automatically identified. Statistical procedures 

were applied for selecting both terms and rivers in distributional semantic models to construct the 

conceptual structures underlying the usage of named rivers. The rivers sharing associated terms 

were also clustered and represented in the same conceptual network. The results showed that the 

method successfully described the semantic frames of named rivers with explanatory adequacy, 

according to the premises of Frame-based Terminology. Furthermore, the semantic networks 

unveiled that the named rivers were thematically related to sediment concentration in rivers, 

sediment discharge into bays, the negative effects of sediment supply decrease on coastal erosion, 

and national shoreline management plans for managing risks due to flooding and erosion. 

 

Keywords: named river; Frame-based Terminology; conceptual information extraction; topic 

modelling; text mining 

 

EcoLexicon es una base de conocimiento terminológica sobre ciencias medioambientales cuyo 

diseño permite la contextualización geográfica de conceptos relacionados con accidentes 

geográficos. Para tal fin, este artículo presenta un método semiautomático para extraer términos 

asociados con ríos con nombre propio (v.gr., Río Salinas). Los términos se extrajeron de un 

corpus especializado en Ingeniería de Costas, donde las designaciones de ríos se identificaron 

automáticamente. Se aplicaron procedimientos estadísticos para seleccionar ríos y términos, que 

se proyectaron en espacios semánticos vectoriales, y se emplearon para construir las estructuras 

conceptuales que subyacían en el uso de los ríos. Los resultados muestran que el método es 

apropiado para describir los marcos semánticos que evocan los ríos, según las premisas de la 

Terminología basada en Marcos. Además, las redes semánticas revelaron que los ríos estaban 

relacionados temáticamente con la concentración de sedimentos, su descarga en las bahías, los 

efectos perniciosos de su reducción para la erosión costera, y planes nacionales de mantenimiento 

de costas para gestionar los riesgos de inundación y erosión. 

 

Palabras clave: río con nombre propio; Terminología basada en Marcos; extracción de 

información conceptual; topic modelling; minería de textos 
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1. INTRODUCTION 

 

EcoLexicon2 is a multilingual, terminological knowledge base on environmental science that 

is the practical application of Frame-based Terminology (Faber, 2012). Since most concepts 

designated by environmental terms are multidimensional (Faber, 2011), the flexible design of 

EcoLexicon permits the contextualization of data so that they are more relevant to specific 

subdomains, communicative situations, and geographic areas (León-Araúz et al., 2013). 

However, the geographic contextualization of named landforms (e.g., Pearl River, Monterey 

Bay, Sunset Beach) is barely tackled in terminological resources because of two reasons in 

our opinion: a) they are considered mere instances of concepts such as RIVER, BAY, or BEACH, 

and their specific relational behaviour with other concepts in a specialized knowledge domain 

is thus neglected and not semantically described; b) their semantic representation depends on 

knowing which terms are related to each named landform, and how these terms are related to 

each other, a time-consuming task taking into account that terminologists do not often resort 

to natural language processing systems beyond corpus tools such as Sketch Engine (Kilgarriff 

et al., 2004). 

Consequently, this paper presents a semi-automatic method of extracting terms 

associated with named rivers (e.g., Omaru River) as types of landform from a corpus of 

English Coastal Engineering texts. The aim is to represent that knowledge in semantic 

networks in EcoLexicon according to the theoretical premises of Frame-based Terminology. 

Hence, on the hypothesis that named rivers should be considered concepts rather than 

instances in the Coastal Engineering domain, each named river should appear in the context 

of a specialized semantic frame that highlights both its relation to other terms and the 

relations between those terms. 

These semantic frames, such as that shown in Figure 1 underlying the linguistic usage 

of Escambia and Pensacola bays in Coastal Engineering texts, provide the background 

knowledge about named rivers necessary in communicative situations, such as specialized 

translation to appropriately render terms into another language (Faber, 2012). Moreover, they 

make the semantic and syntactic behavior of terms explicit by means of the description of 

conceptual relations and term combinations (Faber, 2009). 

 

                                                 
2 http://ecolexicon.ugr.es. 

http://ecolexicon.ugr.es/
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Figure 1: Semantic network of the terms associated with Escambia and Pensacola bays in Coastal 

Engineering texts 

 

The rest of this paper is organized as follows. Section 2 provides motivations for the 

research, and background on distributional semantic models and topic modelling. Section 3 

explains the materials and methods applied in this study, namely, the automatic identification 

of named rivers, the selection procedures for terms and rivers in distributional semantic 

models, the clustering technique for rivers sharing associated terms, and the topic model for 

both the extraction of terms associated with each named river and the construction of its 

corresponding specialized semantic frame. Section 4 shows the results obtained. Finally, 

Section 5 discusses the results and presents the conclusions derived from this work as well as 

plans for future research. 

 

 

2. THEORETICAL FRAMEWORK 

 

2.1 Motivations for the research 

 

Although named landforms, among other named entities, are frequently found in specialized 

texts on environment, their representation and inclusion in knowledge resources has received 

little research attention, as evidenced by the lack of named landforms in terminological 

resources for the environment such as DiCoEnviro3, GEMET4 or FAO Term Portal5. In 

contrast, AGROVOC6 basically contains a list of named landforms with hyponymic 

information, whereas ENVO7 provides descriptions of the named landforms with only 

                                                 
3 http://olst.ling.umontreal.ca/cgi-bin/dicoenviro/search_enviro.cgi. 
4 https://www.eionet.europa.eu/gemet/en/themes/. 
5 http://www.fao.org/faoterm/en/. 
6 http://aims.fao.org/en/agrovoc. 
7 http://www.environmentontology.org/Browse-EnvO. 

http://olst.ling.umontreal.ca/cgi-bin/dicoenviro/search_enviro.cgi
https://www.eionet.europa.eu/gemet/en/themes/
http://www.fao.org/faoterm/en/
http://aims.fao.org/en/agrovoc
http://www.environmentontology.org/Browse-EnvO
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geographic details, and minimal semantic information consisting of the relation located_in 

(and tributary_of in the case of named rivers and bays). 

Up to the present, knowledge resources have limited themselves to representing 

concepts such as BAY, RIVER or BEACH, on the assumption that the concepts linked to each of 

them are also appropriate, respectively, to all instances of named bays, rivers and beaches in 

the real world. This issue is evident in the following description of forcing mechanisms 

acting on suspended sediment concentrations (SSC) in bays and rivers. 

According to Moskalski and Torres (2012), temporal variations in the SSC of bays and 

rivers are the result of a variety of forcing mechanisms. River discharge is a primary 

controlling factor, as well as tides, meteorological forcing (i.e., wind-wave resuspension, 

offshore winds, storm and precipitation), and human activities. Several of these mechanisms 

tend to act simultaneously. Nonetheless, the specific mix of active mechanisms is different in 

each bay and river. For example, SSC in San Francisco Bay is controlled by spring-neap tidal 

variability, winds, freshwater runoff, and longitudinal salinity differences, whereas 

precipitation and river discharge are the mechanisms in Suisun Bay. In Yangtze River, SSC is 

controlled by tides and wind forcing, whereas river discharge, tides, circulation, and 

stratification are the active forcing mechanisms in York River. 

Consequently, in a knowledge resource, a list of forcing mechanisms semantically 

linked to BAY and RIVER concepts would not represent the knowledge really transmitted in 

specialized texts. To cope with this type of situation, terminological knowledge bases should 

include the semantic representation of named landforms. 

To achieve that aim in EcoLexicon regarding named rivers, the knowledge should be 

represented in a semantic network according to the theoretical premises of Frame-based 

Terminology (Faber, 2012), which propose knowledge representations with explanatory 

adequacy for enhanced knowledge acquisition in communicative situations such as 

specialized translation (Faber, 2009). Hence, on the hypothesis that named rivers should be 

considered concepts rather than instances, each named river should appear in the context of a 

specialized semantic frame that highlights both its relation to other terms and the relations 

between those terms. The construction of these semantic networks and the semi-automatic 

extraction of terms from a specialized corpus are described in this paper. As far as we know, 

this framework has not been studied in the context of specialized lexicography, which is an 

innovative aspect of this work. Needless to say that the extraction and description of named 

landforms from text corpora have been applied in the field of Geographic Information 

Retrieval (Derungs & Puves, 2014; Derungs & Samardžić, 2018; Wartmann et al., 2018), but 

not with the purposes of the Frame-based Terminology. 

 

2.2 Distributional semantic models 

 

Distributional semantic models (DSMs) represent the meaning of a term as a vector, based on 

its statistical co-occurrence with other terms in the corpus. According to the distributional 

hypothesis, semantically similar terms tend to have similar contextual distributions (Miller & 

Charles, 1991). The semantic relatedness of two terms is estimated by calculating a similarity 

measure of their vectors, such as Euclidean distance, or cosine similarity (Salton & Lesk, 

1968), inter alia. 

Depending on the language model (Baroni et al., 2014), DSMs are either count-based 

or prediction-based. Count-based DSMs calculate the frequency of terms within a term’s 

context (i.e., a sentence, paragraph, document, or a sliding context window spanning a given 

number of terms on either side of the target term). The Correlated Occurrence Analogue to 

Lexical Semantics (COALS) (Rohde et al., 2006) is an example of this type of model. 
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Prediction-based models mostly exploit neural probabilistic language models, which 

represent terms by predicting the next term on the basis of previous terms. Examples of 

predictive models include the continuous bag-of-words (CBOW) and skip-gram (SG) models 

(Mikolov et al., 2013). 

DSMs have been used in combination with clustering (i.e., automatic classification of 

objects into groups based on shared features). Work on lexical semantics applying DSMs and 

clustering techniques includes the identification of semantic relations (Bertels & Speelman, 

2014), word sense discrimination and disambiguation (Pantel & Lin, 2002), automatic 

metaphor identification (Shutova et al., 2010), and classification of verbs into semantic 

groups (Gries & Stefanowitsch, 2010). 

 

2.3 Topic modelling for text mining 

 

Probabilistic topic modelling is a machine learning technique that automatically identifies 

themes or topics in a given corpus (Blei, 2012). This digital technology allows to explore 

documents based on the topics that run through them, rather than on keywords search alone. 

Latent Dirichlet Allocation (LDA) (Blei et al., 2003) is the approach to topic modelling that 

has been most frequently employed. The following explanation of topic models describes 

LDA and is largely based on Griffiths and Steyvers (2004), Murakami et al. (2017), and Spies 

(2018). 

In topic modelling, each term in each corpus document is assigned to one topic. A 

document thus consists of multiple topics of different probability (e.g., 20 percent Topic A, 

10 percent Topic B, 5 percent Topic C, and so forth), approximately following the proportion 

of terms in the document that are assigned to each topic. All documents in a corpus share the 

same set of topics, but with different proportions. Therefore, a document can deal with 

multiple topics, and the terms that appear in that document reflect the particular set of topics 

it addresses. 

 

In natural language processing, the way of modelling the contributions of different 

topics to a document is to treat each topic as a probability distribution over terms, viewing a 

document as a probabilistic mixture of these topics. Starting from observed data in a corpus 

(i.e., occurrence frequency of the terms in the documents), LDA is able to infer a latent 

structure from the corpus, consisting of a set of topics. 

The content of a topic is thus reflected in the terms to which it assigns high probability. 

For example, high probabilities for «woods», «hill» and «stream» would suggest that a topic 

refers to the countryside, whereas high probabilities for «check», «bank» and «credit» would 

suggest that a topic refers to finance. 

According to Spies (2018), from a cognitive view, topic modelling can be related to 

human capabilities to categorize documents. Psychological research found strong empirical 

evidence supporting cognitive adequacy of LDA, in comparison to semantic spaces such as 

Latent Semantic Analysis (Landauer et al., 2011). 

As DSMs, a topic model provides a form of semantic representation, a computational 

analogue of how human might form semantic representations through their linguistic 

experience. Accordingly, the association between terms can be estimated. Since the term 

vectors are probability distributions over topics, the relatedness is quantified by means of 

information-theoretic measures for probability distributions such as Hellinger distance 

(Csiszár & Shields, 2004), or Jensen-Shannon divergence (Lee, 1999), inter alia. 

In digital linguistics, topic models have previously been used for a variety of 

applications, including metaphor identification (Navarro Colorado & Tomás, 2015), thematic 
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exploration of specialized corpora (Murakami et al., 2017) and literary corpora (Jockers & 

Mimno, 2013), and selectional preferences for predicate arguments (Ritter et al., 2010). 

 

 

3. MATERIALS AND METHODS 

 

3.1 Materials 

 

3.1.1 Corpus data 

The terms related to named rivers were extracted from a subcorpus of English texts on 

Coastal Engineering, comprising roughly 7 million tokens and composed of specialized texts 

(scientific articles, technical reports, and PhD dissertations), and semi-specialized texts 

(textbooks and encyclopedias on Coastal Engineering). This subcorpus is part of the English 

EcoLexicon Corpus (23.1 million tokens) (see León-Araúz et al. (2018) for a detailed 

description). 

 

3.1.2 GeoNames geographic database 

The automatic detection of the named rivers in the corpus was performed with a GeoNames 

database dump. GeoNames8 has over 10 million proper names for 645 different geographic 

entities, such as bays, beaches, rivers, and mountains. For each entity, information about their 

normalized designations, alternate designations, latitude, longitude, and location name is 

stored. A daily GeoNames database dump is publicly available as a worldwide text file. 

 

3.2 Methodology 

 

3.2.1 Pre-processing 

After their compilation and cleaning, the corpus texts were tokenized, tagged with parts of 

speech, lemmatized, and lowercased with the Stanford CoreNLP package for R programming 

language. The multi-word terms in EcoLexicon were then automatically matched in the 

lemmatized corpus and joined with underscores. 

 

3.2.2 Recognition of named rivers 

Both normalized and alternate names of the rivers in GeoNames were searched in the 

lemmatized corpus. A total of 783 designations were recognized and listed. Since various 

designations can refer to the same river because of syntactic variation (e.g., Nile River and 

River Nile), and orthographic variation (e.g., Yangtze and Yangtse River), a procedure was 

created to identify variants and give them a single designation in the corpus. 

In the case of syntactic variations, all the designations with the word River in the last 

position were automatically transformed to the variant with River in the first position (e.g., 

Dee River was converted to River Dee) and matched in the list of recognized designations. 

Orthographic variations were identified with a matrix of the Levenshtein edit distances 

between the 783 designations. The Levenshtein distance between two strings is the number of 

deletions, insertions, or substitutions required to transform the first string into the second one. 

As such, the pairs of strings with an edit distance of 1 or 2 were manually inspected to 

discover the orthographic changes. 

Once the variants were normalized in the lemmatized corpus and joined with 

underscores, the number of named rivers was 674. The 250 rivers with the highest number of 

mentions in the corpus are shown on the map in Figure 2. Their latitudes and longitudes were 

                                                 
8 http://www.geonames.org. 

http://www.geonames.org/
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retrieved from the GeoNames database dump. This reflects the representativeness of the 

corpus in reference to river locations. 

 

 
Figure 2: Map with the location of the named rivers 

 

 

A critical issue was the retrieval of the geographical coordinates of the rivers. Although 

latitudes and longitudes could be retrieved from the GeoNames database dump, occasionally, 

the same designation referred to rivers in different countries. For instance, the corpus only 

located Yellow River in China. However, GeoNames indicated that rivers with the same name 

also existed in the USA, Canada, Ireland, and Papua New Guinea. Such cases had to be 

resolved by corpus queries. 

The occurrence frequency of the named rivers ranged from 118 (Yantze River Estuary) 

to only one mention (349 out of 674 named rivers). In our study, only those rivers with a 

frequency greater than 9 were considered, since DSMs perform poorly with low-frequency 

terms (Luhn, 1957). Figure 3 shows the 55 named rivers that fulfilled this condition, along 

with their number of mentions. 
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Figure 3: Designations and number of mentions of the 55 named rivers whose occurrence frequency was 

higher than 9 

 

3.2.3. Term-term matrix construction 

A count-based DSM was selected to obtain term vectors since this type of DSM outperforms 

prediction-based ones on small-sized corpora (Ars et al., 2016; Sahlgren & Lenci, 2016). The 

DSM was built with the R package quanteda for text mining. 

For the construction of the DSM, terms with fewer than three characters, numbers, and 

punctuation marks were removed. Additionally, the minimal occurrence frequency was set to 

5 (Evert, 2007). The sliding context window spanned 30 terms on either side of the target 

term because large windows improve the DSM performance for small corpora (Rohde et al. 

2006; Bullinaria & Levy, 2007) and capture more semantic relations (Jurafsky & Martin, 

2019). We followed standard practice and did not use stopwords (i.e., determiners, 

conjunctions, relative adverbs, and prepositions) as context words (Kiela & Clark, 2014). 

Since only nouns are represented in the semantic networks, adjectives, adverbs, and verbs 

were also disregarded as context words. 

The resulting DSM was a 4705 × 4705 frequency matrix A, whose row vectors 

represented the 55 named rivers plus the 4650 terms inside the context windows of 30 terms 

on either side of those rivers. 

 

3.2.4 Selection of rivers and terms for clustering purposes 

Subsequently, a 55 × 4650 submatrix B was extracted from A, where the rows represented the 

55 named rivers, and the columns represented the 4650 terms co-occurring with the rivers. To 

cluster the rivers of B sharing the same associated terms, it was necessary to select both the 

rivers and the terms that best discriminated different groups of rivers. This was done by 

removing the rivers and the terms that could act as random noise and adversely affect the 

clustering results (Kaufman & Rousseeuw, 1990). The remainder of this section explains the 

selection method of rivers and terms for clustering purposes. 

An issue often highlighted in the literature on the clustering of rows in a frequency 

matrix abstracted from corpus data is that variation in document length will affect the 

clustering results. These documents are thus clustered in accordance with relative length 

rather than with a more interesting latent structure in the data (Thabet, 2005; Moisl et al., 

2006). The conventional solution to the problem is to normalize the values in the frequency 
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matrix to mitigate the effect of length variation. Normalization by mean document length 

(Spärck et al., 2000) is widely used in Information Retrieval literature. 

Nevertheless, as stated by Moils (2011), there is a limit to the effectiveness of 

normalization, and it has to do with the probabilities with which the terms in the column 

vectors occur in the corpus. Some documents in the matrix rows might be too short to give 

accurate population probability estimates for the terms, and since length normalization 

methods accentuate such inaccuracies, the result is that analysis based on the normalized data 

inaccurately clusters the rows. One solution consists in statistically ascertaining which 

documents are too short to provide good estimates and to remove the corresponding rows 

from the matrix. 

For that aim, Moisl (2011: 42-45) proposes a formula that calculates the document 

length necessary to estimate the probability of each term in the column vectors with a 95% 

confidence level. Therefore, the formula can be applied to establish a minimum length 

threshold for the documents and to eliminate any documents under that threshold. 

In our case, a document was considered to be the set of all context windows where a 

certain named river appeared, and thus corresponded to a row of matrix B. As such, we had 

55 named-river documents. Similarly, the length of a document was considered to be the total 

number of words appearing in the set of all context windows of a certain named river. The 

document lengths ranged from 6507 words (for Yantze River Estuary) to 563 words (for Blyth 

River Estuary). Moisl’s (2011) method was then applied to matrix B to determine: a) which 

of the 55 named rivers should be eliminated from our analysis, if any; and b) which terms 

helped to distinguish different groups of the retained rivers. 

Table 1 shows the length for named-river documents needed by each of the 4650 terms 

in the columns of matrix B so that their population probabilities could be estimated with a 

95% confidence level, according to Moisl’s (2011) formula. The terms in Table 1 were sorted 

in ascending order of the required document length. 

 
Table 1: Length needed for named-river documents (mostright column) associated with each of the 4650 

terms (middle column) co-occurring with the rivers, according to Moisl’s (2011) formula 

Index Term 
Length needed for named-river 

documents 

1 shoreline 391 

2 sediment_load 587 

3 dam 648 

4 sediment 677 

5 reservoir 744 

[…] […] […] 

428 aquifer 6435 

429 clay 6438 

430 gaoyao_station 6438 

431 morphology 6505 

432 sand_transfer 6516 

[…] […] […] 

4649 turbulent_viscosity 687372 

4650 specific_gravity 687372 

 

Since the lowest document-length value needed by the terms was 391 words (for the 

term shoreline in the first row of Table 1), those rivers whose document length were smaller 

than the minimum length threshold 391 would have to be eliminated from the analysis. This 

meant that the 55 rivers were retained because they all had a document length larger than 

391. 
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Regarding the selection of terms, since the maximum length of our named-river 

documents was 6507 words, only the first 431 terms in Table 1 were retained for clustering 

purposes because their needed document lengths were less than 6507 words. These results are 

plotted in Figure 4, where the 4650 terms co-occurring with the 55 rivers are on the 

horizontal axis (sorted in ascending order of the needed document length), and their required 

document lengths are on the vertical axis. The red horizontal line indicates the maximum 

length of the named-river documents (6507 words), and the green vertical line marks the 431 

terms whose needed document lengths were equal to or less than the maximum named-river 

document length. Therefore, a 55 × 431 submatrix C was extracted from B to group the river 

vectors. 

 

 
Figure 4: The required document lengths (vertical axis) associated with each of the 4650 terms (horizontal 

axis) co-occurring with the 55 named rivers 

 

3.2.5. Clustering of named rivers and weighting schemes 

The 55 × 431 frequency submatrix C was subjected to three weighting schemes. First, the 

statistical log-likelihood measure (Dunning, 1993) was applied to calculate the association 

score between all term pairs, including the named rivers (Evert, 2007: 24-30). Research on 

computational linguistics reveals that log-likelihood is able to capture syntagmatic and 

paradigmatic relations (Bernier-Colborne & Drouin, 2016; Lapesa et al., 2014) and to achieve 

better performance for medium-to-low-frequency data than other association measures 

(Alrabia et al., 2014; Krenn, 2000). However, the calculation of the log-likelihood scores was 

modified to cope with these critical situations: 

 

1) When the observed frequency was less than the expected one, the score was set to 0, 

as recommended by Evert (2007: 22). Otherwise, the score would have been negative 

showing repulsion between terms, whereas our interest was in the stronger attraction 

to each other. 

2) When a term pair did not co-occur (i.e., its observed frequency was 0), the score was 

set to 0. Otherwise, the score would have obtained a low value, indicating a certain 

attraction between the two terms despite the absence of co-occurrence in corpus data. 

3) When a term co-occurred with only one river, the corresponding addend in the 

log-likelihood formula (i.e., the addend where the observed frequency O21 takes part, 

according to Evert (2007: 25)) was set to 0. Otherwise, the score would have tended 

to minus infinity, and its value would have been undetermined. 
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Secondly, the association scores were transformed by adding 1 and calculating the 

natural logarithm to reduce skewness (Lapesa et al., 2014). Finally, the row vectors were 

normalized to unit length to minimize the negative effects of extreme values on the Euclidean 

distance-based clustering technique. 

A hierarchical clustering technique was then applied to the weighted 55 × 431 

submatrix C. The cosine distance was used as the intervector distance measure, and Ward’s 

method as the clustering algorithm (i.e., a criterion for choosing the pair of clusters to merge 

at each step, based on the minimum increase in total within-cluster variance). 

Since it was not clear how strongly a cluster was supported by data, a means for 

assessing the certainty of the existence of a cluster in corpus data was devised. Multiscale 

bootstrap resampling is a method for this in hierarchical clustering, which was implemented 

in the R package pvclust (Suzuki & Shimodaira, 2006). For each cluster, this method 

produces a number ranging from zero to one. This number is the approximately unbiased 

probability value (AU p-value), which represents the possibility that the cluster is a true 

cluster. The greater the AU p-value, the greater the probability that the cluster is a true cluster 

supported by corpus data. An AU p-value equal to or greater than 95% significance level is 

most commonly adopted in research. 

Thirteen groups of rivers with p-values higher than 95% were strongly supported by 

corpus data, as marked by the red rectangles in the dendrogram in Figure 5. 

 

 
Figure 5: Dendrogram of the hierarchical clustering of the 55 named rivers with 13 clusters 

 

3.2.6. Selection of terms for semantic network construction 

Since the 431 terms of the submatrix C were not sufficient to straightforwardly construct the 

semantic networks for the 13 clusters of rivers, another statistical method was employed to 

select the terms that best described the 55 rivers. In Corpus Linguistics, Moisl (2015: 77-93) 

suggests retaining the term columns with the highest values in four statistical criteria: raw 

frequency, variance, variance-to-mean ratio (vmr) and term frequency-inverse document 

frequency (tf-idf). 

Moisl’s (2015) method was applied to the 55 × 4650 frequency submatrix B, whose 

rows represented the 55 named rivers. The columns represented all the terms co-occurring 

with them (excluding the rivers) inside their context windows of 30 terms on either side. 
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Figure 6 shows the co-plot of the four criteria, z-standardized for comparability reasons, and 

sorted in descending order of magnitude. A threshold of up to 2000 was set. This meant that 

only 1858 terms fulfilled all criteria for the construction of the semantic networks. 

We estimated that 30 terms would be necessary for a named river to describe its 

semantic frame. A total number of terms around 1650 would thus be required for the 

description of the 55 rivers. The threshold was set accordingly, so that the number of selected 

terms was about 1650 terms (1858 selected terms in our study). 

 

 
Figure 6: Co-plot of the four criteria for term selection: Frequency, variance, vmr, and tf-idf 

 

3.2.7. Topic modelling for the extraction of terms associated with named rivers 

Once 1858 terms were selected for the semantic description of the 55 rivers, the relatedness 

of each river to those terms was estimated by means of a topic model. The Biterm Topic 

Model (BTM) (Yan et al., 2013), based on LDA, was applied to the lemmatized corpus, but 

containing only the occurrences of the 55 rivers and the 1858 terms selected. 

In our case, BTM was chosen for the following reasons. First, it was found that BTM 

outperforms LDA for small corpora and short texts (note that the corpus contained only 1913 

term types, namely, 55 rivers plus 1858 terms) because it helps to alleviate the data sparsity 

problem of LDA (i.e., the low co-occurrence frequency of term pairs reduces the semantic 

coherence of the topics) (ibidem). Furthermore, BTM explicitly models the term 

co-occurrences in local context windows rather than in the document level, thus capturing the 

short-range dependencies between terms. 

For BTM, a context window size of 30 terms was set, the same value as that in the 

DSMs used for the clustering of the rivers and the selection of the terms for the construction 

of semantic frames. However, the appropriate number of topics needs to be found by 

experimentation, calculating the harmonic mean of the document log-likelihood estimated by 

different models. 

The harmonic mean of the document log-likelihood is a traditional measure used to 

select the topic model with the best generalization capability, namely, the ability of the model 

to identify the topics treated in unseen document, based on the analysis of the topics 

appearing in the documents of a training corpus. The greater the harmonic mean of the 

document log-likelihood, the better. 

The BTM package for R programming language was applied to the corpus, and 39 

models were computed for the topic numbers ranging from 2 to 40. The estimated harmonic 
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mean of the document log-likelihood for each model is shown in Figure 7, where the optimal 

number of topics was found to be 40. 

 

 
Figure 7: Estimated harmonic mean of the document log-likelihood of 39 topic models, with a number of 

topics ranging from 2 to 40, respectively. The optimal number of topics was 40 

 

A 1913 × 40 matrix D was thus extracted from the topic model, where the rows 

represented the 1858 terms plus the 55 rivers, and the columns the 40 inferred topics. Since 

each cell contained the probability that a term or river belonged to a topic, the matrix D is 

called term-topic matrix in the literature. 

The 40 topics of the model are represented in Figure 8 by means of the R package 

LDAvis. Figure 8 illustrates the relation between the topics (left), and the top-30 most 

relevant terms for the topic number 13, related to sediment transport in rivers, bays, and 

beaches (right). 

 

 
Figure 8: Left: Representation of the 40 topics of the model. Right: The top-30 most relevant terms for the 

topic number 13, related to sediment transport in rivers, bays, and beaches 
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3.2.8. Terms characterizing each cluster 

To ascertain the terms strongly associated with each of the 13 clusters, the following 

procedure was used: 

1) For each of the named rivers in the 13 clusters, a set of the top-30 terms, most 

associated with each river, was extracted from the term-topic matrix D using 

Hellinger similarity, namely, the inverse magnitude of Hellinger distance. Hellinger 

similarity ranges from zero to one. The greater the Hellinger similarity between two 

term vectors, the stronger the relatedness of the terms. 

2) For each cluster, the mathematical operation set intersection was applied to the sets of 

the top-30 terms, most associated with the rivers in the same cluster. Only the shared 

terms with a Hellinger similarity higher than 0.4 were selected. 

 

A reduced set of terms was thus obtained for each cluster to describe the named rivers. 

 

 

4. RESULTS 

 

4.1 Qualitative evaluation of the term extraction method 

 

For each of the clusters, the term selection method, described in the above section, produced 

a set of terms characterizing the named rivers. Those term sets were qualitatively compared 

to gold standard sets of terms, manually extracted from the context windows of the 36 rivers 

clustered in the 13 groups in Figure 5, which best described, in our opinion, each of the 

clusters for semantic network construction. 

The comparison of the 13 sets of terms, obtained by the term selection method, with the 

corresponding gold standard term sets unveiled that most terms in the gold standard sets were 

collected by the selection method. Therefore, we assessed the reliability of the method to be 

highly enough to ensure that the selected terms could adequately describe the river clusters. 

For the construction of the semantic frames presented in the next subsection, the term 

selection method was thus applied. 

 

4.2 Semantic frames describing the river clusters 

 

Because of space constraints, only the results for some clusters are provided. Numbering the 

clusters in Figure 5 from left to right, the clusters number two, three, and thirteen are 

described. As shown in Figure 5, the second cluster is formed by the basin, delta, and estuary 

of the Pearl River, and the river itself, located in China. The Salinas River and its mouth, 

placed in California (the USA), comprise the last cluster. Both clusters were selected because 

the named rivers, despite being located in different world areas, are related to the same topics, 

namely, those of sediment concentration and sediment transport in rivers, sediment discharge 

into bays and seas, and the negative effects of sediment supply decrease on coastal erosion 

because of human activities. The third cluster consists of the Dee, Mersey, Ribble, and 

Solway Firth estuaries, all located in Great Britain and involved in national shoreline 

management plans for managing risks due to flood and erosion in coasts and rivers. 

For the description of the frames, the semantic relations were manually extracted by 

querying the corpus in Sketch Engine (Kilgarriff et al. 2004), and by analysing 

knowledge-rich contexts, namely, “a context indicating at least one item of domain 

knowledge that could be useful for conceptual analysis” (Meyer, 2001: 281). The query 

results were concordances of any elements between the river in a cluster and related terms in 

a ±40 span. The semantic relations were those in EcoLexicon (Faber et al. 2009), with the 



111 

 

addition of supplies, accumulates_in, increases, decreases, tributary_of, erodes, loses_into, 

discharges_into, located_near, develops, applies_to, monitors, monitored_in, uses, and 

simulates, necessary for the explanatory adequacy of the frames (Faber, 2009). Furthermore, 

the semantic frames shown in the following were validated by a Coastal Engineering expert 

from the University of Granada (Spain). 

 

4.2.1 Second cluster in Figure 5: Pearl River 

Predicting sediment load (kg/year) in a river system has long been a goal of earth scientists 

for numerous reasons, including alternation of fish habitats, changes in the load from 

anthropogenic effects, and the evolution of deltas, estuaries, and coastal environments. 

Hence, hydrologists have made efforts in applying sediment rating curves that can 

empirically describe the relationship between suspended sediment concentration (g/km3) and 

water discharge (m3/s) for a certain location. In sediment rating curves, sediment rating 

parameters also intervene, which are often associated with river bed morphology and soil 

erodibility. Engineers use sediment rating curves for predicting the life span of a dam on a 

river, and earth scientists use them to study the erosional and depositional environments. 

Dam and reservoir construction are regarded as the main cause of the decline in 

sediment load. For that reason, the issue of sediment load in the Pearl River Delta was 

studied. Attention was paid to the sediment rating parameters of the sediment rating curves. 

The parameters reflected a temporal relationship between water discharge and suspended 

sediment concentration due to human activities, such as land use and reservoir construction. 

These activities are causing a decrease in sediment supply from the Pearl River, with grave 

consequences on the coast (see Figure 9). 

 

 
Figure 9: Semantic network of the terms associated with the Pearl River 

 

4.2.2 Thirteenth cluster in Figure 5: Salinas River 

Sediment is a resource essential to the economic and environmental vitality of Monterey Bay 

beaches, and the mitigation of shoreline erosion. Sources of sand to the southern Monterey 

Bay are from discharge of the Salinas River, and erosion of the beaches and coastal dunes. 

However, human activities and natural processes are changing the sand availability, namely, 

the dams constructed along the Salinas River have decreased its sand supply; most sediment 

from the river is driven north and potentially lost into Monterey Submarine Canyon; and 

beach sand mining and sea level rise cause dune erosion to progress at a higher rate. 
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Figure 10: Semantic network of the terms associated with the Salinas River 

 

4.2.3 Third cluster in Figure 5: Dee, Mersey, Ribble, and Solway Firth estuaries 

In Great Britain, the Department for Environment, Food and Rural Affairs, and the Welsh 

Assembly Government have required to produce Shoreline Management Plans (SMPs) for the 

length of coastline which stretches from Great Orme's Head in Wales to the Scottish Border 

on the Solway Firth Estuary, including the Dee, Mersey, and Ribble estuaries. 

The overall aim of SMP is the flood and erosion risk management along the coast. 

Hence, SMP sets out policies for managing the coastline to reduce those risks to urban areas, 

industrial and commercial activities, and natural environments such as Marine Protection 

Areas. One of those policies is the managed realignment (MR), namely, removing coastal 

defenses or building new ones further inland to allow an area to become flooded by the sea. 

MR, usually pursued in estuarine areas, permits: the restoration of accommodation space 

containing sediment sinks for sediments mobilized by erosion; habitat creation, such as salt 

marshes and mud flats; and the long-term coastal defense resilience. However, in areas where 

there are benefits in reverting to natural processes through MR, there may be an increase in 

tidal flooding or erosion risk with associated negative impacts on historic assets. 

Other plans, incorporated into SMP, have been developed to co-ordinate works for 

flood and erosion risk management, such as Catchment Flood Management Plans, which 

predominantly consider fluvial flood risks. SMP also includes a monitoring programme to 

check shoreline features and wetland bird surveys, among others, and strategic studies, for 

instance, for the extreme water level prediction in the Dee estuary (see Figure 11). 

 



113 

 

 
Figure 11: Semantic network of the terms associated with the Dee, Mersey, Ribble, and Solway Firth estuaries 

 

 

 

5. CONCLUSIONS 

 

To extract knowledge for the conceptual structures (Faber, 2012) that underlie the usage of 

named rivers in Coastal Engineering texts, a semi-automated method for the extraction of 

terms and semantic relations was devised. The semantic relations linking concepts in the 

semantic frames were manually extracted by querying the corpus in Sketch Engine, and by 

analysing knowledge-rich contexts. The query results were concordances of any elements 

between the river in a cluster and related terms in a ±40 span. It was a time-consuming task, 

although essential for the explanatory adequacy of frames (Faber, 2009). In future research, 

the automatic extraction of semantic relations for named rivers by means of knowledge 

patterns (KPs) (Meyer, 2001) will be tested. KPs are lexico-syntactic markers that generally 

convey semantic relations in real texts. For instance, examples of generic-specific KPs are 

such as, is a kind of, and other, and so on. In León-Araúz et al. (2016), a KP-based sketch 

grammar for Sketch Engine was developed, which automatically provides a list of terms that 

hold a specific semantic relation with a target term. In future work, these KPs will be applied 

to our corpus. 
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The method for the extraction of terms closely associated with named rivers offered 

successful results to construct semantic frames with explanatory adequacy, according to the 

premises of Frame-based Terminology. It combined, on the one hand, a count-based DSM, 

weighted by the log-likelihood association measure, to cluster rivers, and selection 

procedures for both rivers and terms based on statistical criteria. On the other hand, a topic 

model was employed to extract the terms related to each named river. 

The semantic frames in the previous section reflected that most terms related to named 

rivers are complex nominals (e.g., sediment rating curves, suspended sediment concentration, 

beach sand mining). English complex nominals are multi-word terms (MWTs) with a head 

noun preceded by modifying elements (i.e., nouns or adjectives) (Levi, 1978). The abundance 

of MWTs is due to, at least, three reasons: specialized language units are mostly represented 

by such compound forms (Nakov, 2013); complex nominals provide relevant information for 

the conceptual structuring of a specialized domain (Meyer & Mackintosh, 1996); and they are 

frequently used to designate specialized concepts in English (Sager et al. 1980). For these 

reasons, complex nominals should be included in the semantic networks and in TKBs such as 

EcoLexicon (Cabezas-García & Faber, 2018). 

Nevertheless, MWT extraction was possible because they were previously matched and 

joined by means of underscoring in the lemmatized corpus, thanks to the list of MWTs stored 

in EcoLexicon. This confirms that EcoLexicon is a valuable resource for any natural 

language processing tasks related to specialized corpora on environmental science. Therefore, 

the profusion of MWTs underlines the importance of applying either automatic, 

semi-automatic, or manual methods to recognize them for the knowledge representation of a 

specialized domain. 

According to the premises of Frame-based Terminology, the semantic frames presented 

underlie the usage of named rivers and their associated terms in Coastal Engineering texts, 

and provide the background knowledge about them, necessary in communicative situations 

such as specialized translation to appropriately render terms into another language (Faber, 

2012). Moreover, the frames make the specific semantic behavior of named rivers in Coastal 

Engineering domain explicit by means of the description of semantic relations and term 

combinations (Faber, 2009). 

Finally, the conceptual structures also highlighted that, in Coastal Engineering texts, 

each named river is found to be semantically related to different, specific topics and concepts 

(e.g., one of the topics is the prediction of suspended sediment concentration by applying 

sediment rating curves; other topics are the sediment supply decrease due to dam 

construction, and the negative effects of beach sand mining on dune erosion). On the 

evidence of these findings supporting our working hypothesis, we thus defend that named 

rivers in Coastal Engineering domain should be semantically represented in terminological 

resources. Consequently, it would be more appropriate for named rivers to be deemed 

concepts for themselves, rather than mere instances of the RIVER concept. 
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